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Introduction Overview of our system for detecting breast cancer

e QOursystemis given an ROl from a breast biopsy WSI and breaks it into instances that are fed into Y-Net.

e Y-Net produces two different outputs: an instance-level segmentation mask and an instance-level probability map.
These outputs are then combined to produce the discriminative segmentation mask.

e A multi-layer perceptron then uses the frequency and co-occurrence features extracted from the final mask to predict

e One in eight women in the United States will be diagnosed
with breast cancer in their lifetime.

e Diagnostic errors are alarmingly frequent, lead to incorrect
treatment recommendations, and can cause significant patient
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harm.
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multi-layer perceptron, perform well for automated diagnosis. breast cancer [r1].

However, these approaches cannot weigh the importance of
different tissue types.

e We introduce Y-Net that combines these two independent
approaches to generate discriminative segmentation masks.

[r1] Mao et al. "Stromal cells in tumor microenvironment and breast cancer." Cancer and Metastasis Reviews 32.1-2 (2013).

Y-Net architecture

e Y-Netis conceptually simple and generalizes U-Net to joint segmentation and classification tasks.

e U-Net outputs a single segmentation mask. Y-Net adds a second branch that outputs the classification label. The
classification output is distinct from the segmentation output and requires feature extraction at low spatial resolutions.
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